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Abstract—The transient energy transfer by radiation and conduction through a semi-infinite medium
has been investigated. A kernel substitution technique has been used in order to obtain analytic solutions
and hence to display readily the main features and parameters of the problem. The temperature and
heat flux as a function of position and time are shown and compared with the pure conduction

solution.
NOTATION o, Stefan-Boltzmann constant;

a, speed of propagation of thermal 7*,  optical depth, v* = kx;

wave; 7,  modified optical depth, 7+ = 3+%/2.
a1,2, dimensionless parameters, defined by

equqtions (25) and (26); INTRODUCTION
“ SPCCIﬁc. heat; THE SOLUTION to the problem of transient energy
D, dlmel}smnless‘ parameter, defined by transfer by pure conduction in a semi-infinite

equation (27); ) medium is well known. The analogous problem
En, exponential integral, E, = f[u"—2exp with energy transfer by both radiation and

[— t/u] dp; 0 conduction is of importance both because of its
k, radiative absorption coefficient; fundamental nature and because of its practical
q.  dimensionless heat flux, g = g*/oT¢; aspects. Transient energy transfer by radiation
q*, heat flux, energy/area-time; and conduction is of interest, for instance, in

t, dimensionless time, ¢ = 3ko T3 t*/pc;
t*,  time;

T, dimensionless perturbation temperature,
T=Tt—1;

T, dimensionless temperature, Tt = T*/Ty;

7, temperature;

To, initial temperature of medium;

Ty, effective temperature of external radia-
tion;

Ts, surface temperature;

x, distance.

Greek symbols

y1,2, dimensionless parameters, defined by
equation (17);

31,3, dimensionless parameters, defined by
equations (11) and (24);

A, thermal conductivity;

p,  density;
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astrophysical problems and in re-entry heating
problems.

The related problem of energy transfer by
radiation and convection has been studied
extensively (see [8), [9], and the authors referred
to in these papers). After this work was com-
pleted, it was pointed out to the author that
Nemchinov [9] had previously obtained a first
approximation to the linearized problem of
transient energy transfer by radiation and con-
duction. The present work approximates the
solution more accurately and includes more
general boundary conditions. The higher approxi-
mations show the wave-like character of the
temperature field when the radiative energy is
dominant as compared with conductive energy
transfer. The effects of external radiation and
surface temperature changes are also studied.
Although the linear approximation is retained,
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important features such as position and approxi-
mate magnitude of rapid temperature changes
are obtained which will still be present in the
non-linear problem.

The present analysis employs a kernel substi-
tution technique which has previously been
shown to be quite accurate [1, 2, 8]. The approxi-
mations involved in this technique are discussed
in [1, 2]. The kernel substitution method allows
the basic integro-differential equation governing
the energy transfer, either linear or non-linear,
to be reduced to a differential equation. The
method is applicable to other problems governed
by the interaction of radiation, conduction, and
convection both steady and time-dependent. This
method and related techniques which also have
reduced integro-differential equations to differ-
ential equations, have previously been applied to
radiative transfer problems by several authors of
whom the first were probably Schuster [3] and
Schwarzschild [4]. Chandrasekhar [5] should be
consulted for a discussion of the various methods
employed.

BASIC EQUATIONS

Statement of the problem

Consider a semi-infinite medium capable of
transferring energy by radiation and conduction.
Initially the medium is at a uniform tempera-
ture Tp throughout. For time #* > 0, the surface
temperature 7* is maintained at T, a constant,
and a constant radiant energy ¢; is incident on
the surface. The temperature and energy flux as a
function of position and time are required.

The equation governing the time-dependent
energy flux is:

og*  oT*
T o M

Distance x is measured from the surface towards
the interior of the medium. p is the density and ¢
is the specific heat of the medium. The total
energy flux ¢* is the sum of the conductive heat
flux ¢; and the radiative heat flux g;.

The conductive heat flux is given by:

oT*
ox

g: = — A @)

where A is the thermal conductivity. If it is
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assumed that the absorption coefficient k is
independent of frequency and temperature, the
radiative heat flux is given by [2, 5]

g} = 20 | T* (7%) Eo(+* — 7¥) d7* —

[}

20 | T*(%) Ex(7% — ) de* +
245 Es(m) 3)

o is the Stefan-Boltzmann constant. E, is the
exponential integral defined as

Eu(+¥) = f ptexp(—de (@)

and 7* is the optical depth, 7* = kx.

It has been implicitly assumed in writing the
last term in equation (3) that the external
radiation g; is diffuse, and also that the surface is
completely transparent to radiation.

Kernel substitution

Equations (1)—(3) with the appropriate bound-
ary conditions completely specify the problem
and a solution may be obtained by numerical
analysis. However, to obtain an analytic solu-
tion, it is convenient to substitute in equation (3)
an approximate kernel of the form a exp (— bx)
for the correct kernel Ez(x) and also
aexp (— bx)/b for the kernel Es(x). The con-
stants a and b are determined by requiring the
exponential kernel duplicate the main features
of the exponential integral kernel, i.e. by re-
quiring that the area and first moment of the
exponential kernel be equal to the area and first
moment of the exponential integral kernel. It is
found that ¢« = 3/4 and b = 3/2.

By means of this substitution and by intro-
ducing the dimensionless variables

q* T* 3

:——’TT:-——’ = 7* 5
1= oTi To' "~ 27 ®)
the equation for the radiative flux becomes
4= [THexp(— (- — D) dr — | T™
0 T
exp[— (F — D] d7 +gsexp(—17) (6)

Linearization

Equation (6) may be further simplified by the
process of linearization without however elimina-
ting any of the overail characteristics of the
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problem. If we confine our attention to pheno-
mena such that

Tt=1+T Q)

where T'is a small perturbation, then the radiative
heat flux becomes

qr—4_fTexp[—— (*r——-‘r)]d'r—4_fT

exp[— (7 — D]dF + 4Trexp(— 1) ()
The temperature T is given by
-1
T, =% ©)

and defines an effective temperature of the
external radiation.

By substituting equations (8) and (2) into
equation (1), one obtains

*=T oT P -
1572—8—t=—2£Texp[—(~r—1-)]><

d7 — 2 [ Texp [~ (7 — 7] dF -+
4T — 2Trexp (— 7) (10)

The dimensionless parameter 6; is given by

3 Ak
8 = o8 (11)
and characterizes the ratio of the amount of
heat conducted to the amount of heat radiated.
A dimensionless time 7 has been introduced by
defining
3kaoT?3
A P (12)

pc

The parameter multiplying ¢* characterizes the
ratio of the amount of heat radiated per unit
time to the internal energy of the medium. The
inverse of this parameter is the time required
to radiate the entire internal energy of the gas
at the rate determined by T.

Differential equation

If one now differentiates equation (10) twice,
and substitutes the resulting equation back into
equation (10) to eliminate the integral terms, one
obtains

dT

BT
(81 + 4) o2

oot

oT

31374 )
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If the radiative flux term had not been linearized,
the resulting differential equation would be

“T BT @1 +T)H

5 a3T oT
154~ gaT T g

T oot ot

where T no longer need be small.
The boundary conditions appropriate to the
problem are

=0: T=0
x=0: T=0 <0
=Ts t>0
g; = t<0
=4T, t>0

x—=o0: T—>0
gt -0

where g;" is the radiative heat flux in the positive
x-direction.

SOLUTION OF THE DIFFERENTIAL EQUATION

If a Laplace transformation in ¢ is applied to
equation (13), one obtains

daT deT
81 Ja 01+ 4 +P)@+PT=0 (14)
where T is the Laplace transformation of 7, i.e.
T = }Oexp (—pt) Tde. (15)
0

The solution of equation (14) can be written
as

T = Ay exp (y17) - A2 exp (y27)  (16)
where
S1+4+p
YLe= T | s
81 4+ 4 + p)2 — 48, p]112
VI3 u 1p) 1P]:l a7

By the use of the inversion integral, the solu-
tion of equation (13) can then be written as

2miT = f Ay exp (pt + y17)dp + f A
r r

exp (pt -+ ye7r)dp (18)

where I'is the path to the right of all singularities
such that Re p = constant.



122

The integration constants 4; and Az are
determined by requiring that the solution,
equation (16), satisfy the Laplace transform of
the modified integro-differential equation, equa-
tion (10). The result is

Ay = Ts (I+v) Tr(1+y)A+y2)
L Ar
p (y2—y1) (y2 — y1)
(19)
Ao — T (U +y2) T (L4 y) (1 + y2)
2=t — -
plz—y) »p (y2 — y1)
(20

Alternatively the solution, equation (18),
could be obtained directly from equation (10)
by Laplace transform methods. However, in
general, the differential equation form is more
informative especially in the non-linear case.

The integrals occurring in equation (18) can,
of course, be evaluated by numerical means.
However, in order to obtain and display the
significant parameters of the problem, an
analytic solution is preferable. An approximate
analytic evaluation can be obtained for both
small time (¢ <€ 1) and for long time (¢ > 1) as
shown in the appendix. The general behavior
for all time can then be inferred from these
results.

EFFECT OF SURFACE TEMPERATURE

Approximation for small time

Since the problem has been linearized, the
effects of surface temperature and incident
external radiation can be separated. If there is no
external radiation, i.e. 7, = 0, an approximate
expression for the temperature valid when
t €1 is given by

T =T [erf02V(8 ) — 47 (St])l/)l erfcz\/(a t)]

@1

Properties of the complimentary error function,
erfc x, and its integrals, i” erfc x, may be found
in reference 6.

Since 7/24/(81t) = x/24/(at*) where o is the
thermal diffusivity, the first term on the right-
hand side of the above equation can be recog-
nized as the usual conduction term.

The last term shows the effect of radiative
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transfer. As the radiative heat transfer becomes
more significant, i.e. as 8; decreases, this term
increases for small = and decreases for large -.
Near the surface, the temperature increases
since the emission of radiative energy, which is
proportional to the temperature, is larger than
the absorption of radiative energy, which is
proportional to the amount of radiation present
and, for small time, is negligible. Away from the
surface, the temperature is increased because of
the absorption of the increased radiative flux.

Asymptotic approximation

For long time, t > 1, the behavior of the
solution is different depending on whether
81 is greater or less than 1. We first restrict
our attention to the case 8; <1, i.e. when
radiation is dominant.

For r>» 1 and 4; < 1, the temperature is

given by
T = asT; erfc s——— 2\/(8 t) + a1Ts exp (— 7/az)
[1 — }erfc D YR ] fort > 7/a (22)
T = asTs erfcz\/(8 t) + a1Ts exp (— 7/az)
erfe |- D i Ifor r < T/a  (23)
where
83 = &, + 4 (24)
) R
G e @
5L/
d= (81 + 4)12 @0
D =[2(1 — 8;) v/8:]172 (27)
812
a= — (51 + 4)32 (28)

83 is a parameter which characterizes the total
diffusion of energy, both radiative and con-
ductive. The first term on the right-hand sides
of both equations (22) and (23) can therefore be
considered as a diffusion term, including radia-
tive and conductive diffusion, with an effective
surface temperature a»7.
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The last terms of equations (22) and (23)
describe a wave-like motion with the following
characteristics: The wave front propagates with
aspeed a. There is a change in temperature across
the wave of a17; exp (—/a2) and hence the
wave decays exponentially with a decay length
defined by 7/a2 =1, or 7 = a2. The compli-
mentary error function terms show the diffusive
structure of the wave. A diffusion width can be
defined as

T— at
D12

=1 (29)

or
D12 (30)

The wave is caused by the following mechan-
ism: For small time, high temperatures are
restricted to small distances from the surface
both because of the conductive diffusion and
because of radiative emission as can be seen
from equation (21). Hence the interior of the
medium receives little energy either by radiation
or conduction. As the high temperatures propa-
gate inwards, the interior begins to receive
energy, but once radiative energy is absorbed in
a distance 1/k, the mean free path for radiation,
the effect is not felt instantaneously everywhere
but propagates as a wave.

As t—> oo, the temperature approaches the
value

T— at =

T = asTs + arTs exp (— 7/az) 3D

and the interior temperature, in general, never
reaches the temperature at the surface Ts.

A schematic diagram of the temperature field
is shown in Fig. 1.

It may be noted that as radiation becomes
dominant and 8; >0, az—~0, a1 — 1, and the
wave decays more rapidly. In the limit, the
temperature is zero throughout the medium.

For ¢t » 1 and 8; > 1, the temperature is
given by

T = aoT; erfc 5———. + a1Ts exp (— 7/as) (32)

2v (3 1)
No thermal wave as in the case 8; <1 is
present. As 81 — o0, ag > 1, a1 = 0, 83— 81, and
the solution approaches that given by pure
conduction.
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Ts
/=0
s a, 7; +
| 1>>|
t<<| |
1
T
© T=0af

Fig. 1. Schematic diagram of temperature field for

T, = 0 and radiative transfer greater than conductive

3k, <1

40To3

shown for small time (+ < 1), large time (¢ > 1), and
in the limit as z— <o,

transfer, 81 = The temperature field is

EFFECT OF EXTERNAL RADIATION
Approximation for small time
If the surface temperature is zero but an
external radiation field is present, the tempera-
ture within the medium is given for small time
by

T = 2T, [(zt;)l/z exp (— 7) [1[24/(271)] —

41i2 erfc (33)

-
2\/(81t)]
where I, is the modified Bessel function. Both
terms on the right-hand side of the above ex-
pression are proportional to ¢ for small time and
hence are of less importance than either of the
terms in equation (21). For = =0, the above
expression gives 7 =0 as it must in order to
satisfy the condition T; =0. As 7-- <o, the
temperature again approaches zero.

Asymptotic approximation

Again let us consider first the case when
81 << 1. For ¢t » 1 and 81 < 1, the temperature
is given by

T = a1Ty erfc 2\/(8 t) — a1Ty exp (— 7/az) X
[1 — }erfc D TR J fort, > r/a (34)
T ay
T = alTr erfc W_ ’2*' Tr exXp (— T/az) X

erfc lfort < 7la (35)

D 2
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The first terms on the right-hand sides of the
above equations show the diffusive character of
the temperature field with a diffusivity 83 and
an effective surface temperature a;7y. The last
term describes a wave-like motion as in the
previous case with the same attenuation and
diffusion of the wave. However, the change in
temperature across the wave is now —aiTy
exp (—7/as) or a reversal in sign from the
previous case.

The mechanism for the wave formation is
effectively the reverse of that due to the surface
temperature. For small time, the temperature
reaches a maximum very near the surface. As
time increases, this maximum temperature
moves inward. However, the temperatures
behind this maximum decrease more rapidly
than those in front since the volume elements
behind the point of maximum temperature are
closer to the surface and lose energy more
readily.

As t -+ o0, the temperature becomes

T = aiTy [1 — exp (— 7/az)] (36)
A schematic diagram of the temperature field is
shown in Fig. 2.

t—»@

7>>1

|
|
|
fe<l |
1
I

T=at
T

FIG. 2. Schematic diagram of temperature field for 7s = 0

and 81 < 1. The temperature field is shown for small

time (t<1), large time (#>1), and in the limit
i as f— o0,

For ¢ > 1 and 6; > 1, the temperature is

-
T = aTyerfc 55—

HrET 24/(e)
and is zero for =0 and as 7 . The
temperature has the same form as the asymp-
totic solution to the problem of the transient

— aiTrexp (— t/az) (37)
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heat transfer by conduction alone in a semi-
infinite medium with thermal diffusivity 83 and
with heat being generated internally at a rate
proportional to ai1Tr exp (— /as) [6].

HEAT FLUX
If the temperature field is known, the heat
flux can be found from equations (2) and (3). If
we restrict our attention to the surface heat flux,
these equations reduce to

aT
qc T 281 (E-)T—U

gr = — 4 Ojo T(r)exp [— 7]1dr + 4T, (39)
0

(3%)

In the lowest order approximation keeping
only the first term of equation (21), the heat
flux for small time is

_ T
RERNRY/C2 )

gr = — 4Ts[1 — exp (812) erfc /(81)] + 4T
(41)

In this approximation, the conductive heat flux
is the same as in the pure conduction problem.
The radiative heat flux is the sum of two com-
ponents, an inward flux of 47, due to the
external radiation, and an outward flux due to
radiative emission from the medium itself.

As t — 0, the radiative heat flux is

o1t
qr:’"8Ts\/(‘£‘)+4Tr

and increases as +/z. Therefore, for small time,
the conductive heat flux is dominant.

For ¢ > 1 and for any value of 31, the surface
heat flux in the first approximation is

(40)

42)

asTs 4+ a1 Ty a1
ge = 28, [—\7(7733 B o T Ts)] 3)
gr = — 4[a2Ts + aiTy] [1 — exp (83t)
4
exfe /(3at)] + —t (T — T) + 4T, (44)
as+1
As t > o0,
8as
Qe =~ 174 (T; — Ty 45)
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qC
4

[

20,
— e (- S
¥ (F-7%)

Fic. 3. Surface conductive heat flux as a function of

time for T, > Ts. Dashed lines show approximations for

long and short time, while the solid line indicates the
interpolated value for the conductive heat flux.

a,a,
aytl

(7--75)
\\f>>l

r \
\
o QD
4 ~N\_ r<<l|

% \

(Ir-T5)

az
as*|

4

FiG. 4. Surface radiative heat flux as a function of time

for T, > T,. Dashed lines show approximations for long

and short time, while the solid line indicates the inter-
polated value for the radiative heat flux.

8as

and the net flux is then zero. The conductive and
radiative surface heat fluxes are shown in Figs.
3 and 4.

qr = + (Tr—‘Ts)
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APPENDIX

Approximation for small time

An approximate evaluation of the integrals
occurring in question (18) can be accomplished
by substituting expansions for large p for the
functions 43,2 and y1,2. Since large p corre-
sponds to high frequencies, this approximation
is valid when the high frequency waves dominate,
i.e. when 7 is small,

For large p,

p\V2 1
Y1 = - (g;) +0 (;7172) (AT)
Y2:—1+;)+0(—2) (A2)
T, 2T, 1
a=y e rols) @
1
AZ =0 (ﬁ'ﬁé) (A4)

If these expressions are substituted into equa-
tion (18), the integrations can be performed
easily and equations (21) and (33) result.

Asymptotic approximation

For large time, the form of the integrals in
equation (18) suggests evaluation either by the
method of steepest descent or of stationary
phase [7]. The method of stationary phase is
more convenient for this problem. In this
method, the dominant contributions to the
integral come from the neighborhood of the
stationary or saddle point and perhaps from any
singularities enclosed by the contour path
deformed to pass through the saddle point.
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In order to determine the path of stationary
phase, it is necessary to know the singular
points of y; and vys. y1 has branch points at

(A5)
(A6)

and y2 has branch points at p;, ps, and p3 = 0.

For the evaluation of T3, the second integral
in equation (18), we anticipate that the saddle
point will be located near the origin. We then
can approximate vz and A4z by expanding these
functions for small p. The result is

P12 = — 4 -+ & + 4i81?

ps= 0

p o \l2
Y2 = — (m) +0(% (A7)

o)

Write the second integral in equation (18) as
| Az exp [f(p)t] dp, where

axTs + aiTy

Az = (A8)

f(p) =p + 72 8—17/271)1'2 +p + 0(p%?)
3
(A9)
If we let p = z2, then
.
flz) = — 51 - +224+0(z%)  (Al10)

The saddle point is located at the point z¢ at

which f'(zo) = 0, or
.
79 = + 251 (Al1)
In the vicinity of the saddle point,
@ =10+ — e (A1)

If the previous integration path I' is now de-
formed so as to pass through the saddle point
zo and so as to be a path of stationary phase,
then, by the use of equations (A10) and (A12),
an asymptotic value for 7% is given by

[asz “f‘ alTr]

T, = — exp [f(z0)t]

Jexp [1f"(zo)(z — z0)?/2] dz

z

(Al3)

o~
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. Yy
N \' ,
\ 2z /
P| \ //
LI 2,7
LR Z3 <\
—_—
123 4' \
/ /"2 \
[ \
\\
£ plane Z plane

FiG. 5. Deformed integration path for the diffusion term

T of equation (18). The original path is shown by a solid

line, while the path of statlonary phase is indicated by a

dashed line. The saddle point is located at po in the p
plane and zo in the z plane.

The path I", in the p and z planes, is as shown
in Fig. 5. For small z, the path is a straight line
at 45° to the real axis. Along this path the
integral in equation (A13) can be written as

[explele— 7, _ Texp (taf?)

, z E+aq1 d¢ +
I 0
exp ( — iaé?)
J TErg A
where
D

q1 = zo exp (— in[4)
qe = zo exp (in/4)

These integrals can then be integrated and lead
to the result for T given as the first terms on the
right-hand sides of equations (22) and (34).

For the evaluation of 71, the first integral in
equation (18), we again anticipate that the
saddle point will be located near the origin. y1
and A are then approximated by

(31 + 42 2
== U
2(61 — 1
oo @
a (Tr - Ts) 1
A== 2R o) a0
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If we write this integral as [ 41 exp[f(p)t]dp,
then

f(p):—-a—;—ter(l

—r) @ x 1)Tp2

@) T asm
(A17)
The saddle point is located at
(@—7) 8
Po P 5(—37_—]) (A18)
and it follows that
—a(Ty — T
7y = 22T o o)
i —_— 2
.[ exp [t/"'(po) p(p Po)/2] & (AI9)
B2

The path of integration is shown in Fig. 6 and,
for small p, is the same as the path of integra-
tion in the z plane, for small z, shown in Fig. 5.
Since only the path near the saddle point is
important and since the integrands of equations
(A13) and (A14) are the same, the values of the
integrals are the same.
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In the present case, the saddle point may be
located on either the positive or negative real
axis. If the deformed path I passing through
the saddle point encloses the singular point

FiG. 6. Deformed integration path for the wave term

Ty of equation (18). The original path is shown by a

solid line, the path of stationary phase by a dashed line.
The saddle point is at po.

p =0, the contribution from this singular
point must be included.

The results of these integrations are shown as
the last terms of equations (22), (23), (34), and
(35).

Résumé—Le transport d’énergie non-stationnaire par rayonnement et conduction a travers un milieu

semi-infini a été étudié. On a employé une technique de substitution de noyau afin d’obtenir des

solutions analytiques et, par suite, de montrer aisément les caractéristiques principales et les paramétres

du probléme. La température et le flux de chaleur sont donnés en fonction de la position et du temps
et comparés avec la solution de la conduction pure.

Zusammenfassung—Die kurzzeitige Ubertragung von Energie durch Strahlung und Leitung in einem

halbunendlichen Medium wurde untersucht. Um analytische Losungen zu erzielen und um die

Grundziige und Parameter des Problems vollig aufzuzeigen, wurden einzelne Terme durch Exponen-

tialfunktionen ersetzt. Temperatur and Wirmestromdichte als Funktion von Ort und Zeit werden
dargestellt und mit der Losung fiir reine Leitung verglichen.

Annoramma—I3yyaincs nepexogHofl Iponece mepeHoca SHEPTHN ‘epes TOILYGeCKOHEUHYIO

Cpejly M3JIy4YeHHeM Il TelJIONPOBOAHOCTLIO. [l TOro, 4ToGH MOJYYHUTh AHATHTHUECKIE

pelieHus |, CIeTOBATENLHO, NMOIYYUTH MOJHYI0 KAPTHHY 3aBHCUMOCTH OT OCHOBHHX Tepe-

MEeTpOB 3ajadulf, HCIOJL30BAJICA METOJ 3aMeHl AApa. TeMueparypa I TemJoBOH IOTOK,

MosyueHHble KaK QyHKINIL KOOPANHATH M BPEMEHH, CPABHMBAIOTCA € PElIEHHeM JUIA CIydas
YUCTOR TEMIOIPOBOTHOCTH.



