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TRANSIENT ENERGY TRANSFER BY RADIATION AND 
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WILBERT LICK 

Division of Engineering and Applied Physics, Harvard University, Cambridge, Massachusetts 
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Abstract-The transient energy transfer by radiation and conduction through a semi-intinite medium 
has been investigated. A kernel substitution technique has been used in order to obtain analytic solutions 
and hence to display readily the main features and parameters of the problem. The temperature and 
heat flux as a function of position and time are shown and compared with the pure conduction 

solution. 
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NOTATION 

speed of propagation of thermal 
wave ; 
dimensionless parameters, defined by 
equations (25) and (26); 
specific heat ; 
dimensionless parameter, defined by 
equation (27) ; 

exponential integral, En = j p-2 exp 
I- t/d dp; 0 

radiative absorption coefficient; 
dimensionless heat flux, q = q*/aTt; 

heat flux, energy/area-time; 
dimensionless time, t = 3ko Tg t*/pc; 
time ; 
dimensionless perturbation temperature, 
T=Tf-- 1; 
dimensionless temperature, Tt = T*/To; 
temperature ; 
initial temperature of medium; 
effective temperature of external radia- 
tion; 
surface temperature; 
distance. 

Greek symbols 
dimensionless parameters, defined by 
equation (17) ; 
dimensionless parameters, defined by 
equations (11) and (24) ; 
thermal conductivity; 
density; 

119 

0, Stefan-Boltzmann constant; 
r*, optical depth, T* = kx; 

7, modified optical depth, T = 3r*/2. 

INTRODUCTION 

THE SOLUTION to the problem of transient energy 
transfer by pure conduction in a semi-infinite 
medium is well known. The analogous problem 
with energy transfer by both radiation and 
conduction is of importance both because of its 
fundamental nature and because of its practical 
aspects. Transient energy transfer by radiation 
and conduction is of interest, for instance, in 
astrophysical problems and in re-entry heating 
problems. 

The related problem of energy transfer by 
radiation and convection has been studied 
extensively (see [B], [9], and the authors referred 
to in these papers). After this work was com- 
pleted, it was pointed out to the author that 
Nemchinov [9] had previously obtained a first 
approximation to the linearized problem of 
transient energy transfer by radiation and con- 
duction. The present work approximates the 
solution more accurately and includes more 
general boundary conditions. The higher approxi- 
mations show the wave-like character of the 
temperature field when the radiative energy is 
dominant as compared with conductive energy 
transfer. The effects of external radiation and 
surface temperature changes are also studied. 
Although the linear approximation is retained, 
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important features such as position and approxi- 
mate magnitude of rapid temperature changes 
are obtained which will still be present in the 
non-linear problem. 

The present analysis employs a kernel substi- 
tution technique which has previously been 
shown to be quite accurate [I, 2,8]. The approxi- 
mations involved in this technique are discussed 
in [l, 21. The kernel substitution method allows 
the basic integro-differential equation governing 
the energy transfer, either linear or non-linear, 
to be reduced to a differential equation. The 
method is applicable to other problems governed 
by the interaction of radiation, conduction, and 
convection both steady and time-dependent. This 
method and related techniques which also have 
reduced integro-differential equations to differ- 
ential equations, have previously been applied to 
radiative transfer problems by several authors of 
whom the first were probably Schuster [3] and 
Schwarzschild [4]. Chandrasekhar [5] should be 
consulted for a discussion of the various methods 
employed. 

BASIC EQUATIONS 

Statement of the problem 
Consider a semi-infmite medium capable of 

transferring energy by radiation and conduction. 
Initially the medium is at a uniform tempera- 
ture TO throughout. For time t* > 0, the surface 
temperature T* is maintained at T,*, a constant, 
and a constant radiant energy q: is incident on 
the surface. The temperature and energy flux as a 
function of position and time are required. 

The equation governing the time-dependent 
energy flux is : 

aq* aT* -- 
ax -=wat* 

Distance x is measured from the surface towards 
the interior of the medium. p is the density and c 
is the specific heat of the medium. The total 
energy flux U* is the sum of the conductive heat 
flux G: and ihe radiative heat flux qz. 

The conductive heat flux is given by: 

the equation for the radiative flux becomes 

4r = j Tt4 exp [- (T - ?)I d? - 7 Tt4 
0 

q:=_ Aa2 
2X 

exp [- (C - T)] di: + qs exb (- T) (6) 

Linearization 
(2) Equation (6) may be further simplified by the 

process of linearization without however elimina- 
where h is the thermal conductivity. If it is ting any of the overall characteristics of the 

assumed that the absorption coefficient k is 
independent of frequency and temperature, the 
radiative heat flux is given by [2, 5j 

4; = 20 i T*4 (?*) l&(7* - +*) &” - 

2a 7 T*4(,*) E2(7* - T*) d?* + 

2 q&(7*) (3) 
u is the Stefan-Boltzmann constant. En is the 
exponential integral defined as 

E%(T*) = s’ pn-2 exp (- T*/CL> dp (4) 
0 

and T* is the optical depth, T* = kx. 
It has been implicitly assumed in writing the 

last term in equation (3) that the external 
radiation qs is diffuse, and also that the surface is 
completely transparent to radiation. 

Kernel substitution 
Equations (l)-(3) with the appropriate bound- 

ary conditions completely specify the problem 
and a solution may be obtained by numerical 
analysis. However, to obtain an analytic solu- 
tion, it is convenient to substitute in equation (3) 
an approximate kernel of the form a exp (- bx) 
for the correct kernel Ez(x) and also 
a exp (- bx)/b for the kernel Es(x). The con- 
stants a and b are determined by requiring the 
exponential kernel duplicate the main features 
of the exponential integral kernel, i.e. by re- 
quiring that the area and first moment of the 
exponential kernel be equal to the area and first 
moment of the exponential integral kernel. It is 
found that a = 314 and b = 312. 

By means of this substitution and by intro- 
ducing the dimensionless variables 
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problem. If we confine our attention to pheno- 
mena such that 

Tt=l+T (7) 

where Tis a small perturbation, then the radiative 
heat flux becomes 

qr=4~Texp[-(~--+)]dT-4~T 

eip [- (? - T)] d? + 4T, exi (- T) (8) 

The temperature Tr is given by 

and defines an effective temperature of the 
external radiation. 

By substituting equations (8) and (2) into 
equation (l), one obtains 

6i~-$=-2~Texp[-(7-?)]x 
0 

d+--2yTexp[-(+--T)]d?+ 

4T’-- 2Tr exp (- T) (10) 

The dimensionless parameter 61 is given by 

3 Xk 
” =4*T; (11) 

and characterizes the ratio of the amount of 
heat conducted to the amount of heat radiated. 
A dimensionless time t has been introduced by 
defining 

3 kuT;t* 
1 =>.__ 

PC 
(12) 

The parameter multiplying t* characterizes the 
ratio of the amount of heat radiated per unit 
time to the internal energy of the medium. The 
inverse of this parameter is the time required 
to radiate the entire internal energy of the gas 
at the rate determined by TO. 

Di~erential equation 
If one now differentiates equation (10) twice, 

and substitutes the resulting equation back into 
equation (10) to eliminate the integral terms, one 
obtains 

a4T ST 
SlF+- Csl + 4)z2 =a,2 at 

If the radiative flux term had not been linearized, 
the resulting differential equation would be 

a4T a2T a2 (1 + T)4 
“la7- *l7$- a72 

a3T aT =--_-- 
aT2 at at 

where T no longer need be small. 
The boundary conditions appropriate to the 

problem are 

t=O: T=O 

x =o: T=O t<O 

=T, t>O 

q+=o r t<O 

=4T, t>O 

x-tco: T-+0 

qr+ +O 

where q,+ is the radiative heat flux in the positive 
x-direction. 

SOLUTION OF THE DIFFERENTIAL EQUATION 

If a Laplace transformation in t is applied to 
equation (13), one obtains 

hd;- @I+ 4 +~)~;;+pl. = o (14) 

where T is the Laplace transformation of T, i.e. 

T = Texp(-pt)Tdt. (15) 
0 

The solution of equation (14) can be written 
as 

T = Aexp(ylT) + A2 exp(y2d (16) 
where 

a1+4+p 
y1,2 = - 261 * 

l/[(& + 4 + PI2 - 4b71 li2 
2% 1 (17) 

By the use of the inversion integral, the solu- 
tion of equation (13) can then be written as 

2+T = J A1 exp (pt + ~14 dp + J A2 
r r 

exP(Pt + y24dp (18) 

where f is the path to the right of all singularities 
such that Rep = constant. 
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The integration constants AI and As are 
determined by requiring that the solution, 
equation (16), satisfy the Laplace transform of 
the modified integro-differential equation, equa- 
tion (10). The result is 

(19) 

Ts (1 + ~2) /Is=+- Tr (1 + rd (1 + YZ) 
- -. ~ 

P 69 - rd P 69 - rd 

(20) 

Alternatively the solution, equation (18), 
could be obtained directly from equation (10) 
by Laplace transform methods. However, in 
general, the differential equation form is more 
informative especially in the non-linear case. 

The integrals occurring in equation (18) can, 
of course, be evaluated by numerical means. 
However, in order to obtain and display the 
significant parameters of the problem, an 
analytic solution is preferable. An approximate 
analytic evaluation can be obtained for both 
small time (t < 1) and for long time (t 9 1) as 
shown in the appendix. The general behavior 
for all time can then be inferred from these 
results. 

EFFECT OF SURFACE TEMPERATURE 

Approximation for small time 
Since the problem has been linearized, the 

effects of surface temperature and incident 
external radiation can be separated. If there is no 
external radiation, i.e. Tr = 0, an approximate 
expression for the temperature valid when 
t < 1 is given by 

T=T, erfc----4T i 
0 
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22/(61t) 1 
(21) 

Properties of the complimentary error function, 
erfc X, and its integrals, in erfc x, may be found 
in reference 6. 

Since 7/22/(&t) = x/2y’(at*) where a is the 
thermal diffusivity, the first term on the right- 
hand side of the above equation can be recog- 
nized as the usual conduction term. 

The last term shows the effect of radiative 

transfer. As the radiative heat transfer becomes 
more significant, i.e. as 61 decreases, this term 
increases for small T and decreases for large T. 
Near the surface, the temperature increases 
since the emission of radiative energy, which is 
proportional to the temperature, is larger than 
the absorption of radiative energy, which is 
proportional to the amount of radiation present 
and, for small time, is negligible. Away from the 
surface, the temperature is increased because of 
the absorption of the increased radiative flux. 

Asymptotic approximation 
For long time, t B 1, the behavior of the 

solution is different depending on whether 
61 is greater or less than 1. We first restrict 
our attention to the case 61 < 1, i.e. when 
radiation is dominant. 

For t $ 1 and 61 -C 1, the temperature is 
given by 

T = a2Ts erfc 2d&3t, + alT, exp (- T/as) 

[l-:erfcIrg,:jJ]fort>~/a (22) 

7 

T = azTs erfc ----. t a1T8 exp (- r/as) 
22/(U) 

T - at 
erfc -.-__ I I D,l/:! for t < r/a (23) 

where 

s3 = 61 + 4 

(61 + 4)’ 2 -- 
aL :- 

q/2 
(61 + 4)1’2 

(24) 

(25) 

(26) 

D = [2(1 - 81) 2/8#‘2 (27) 
#I2 

a= _!_ 
2( 

6 1 + 4)3’2 

8s is a parameter which characterizes the total 
diffusion of energy, both radiative and con- 
ductive. The first term on the right-hand sides 
of both equations (22) and (23) can therefore be 
considered as a diffusion term, including radia- 
tive and conductive diffusion, with an effective 
surface temperature asTs. 
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The last terms of equations (22) and (23) 
describe a wave-like motion with the following 
characteristics: The wave front propagates with 
a speed a. There is a change in temperature across 
the wave of alT, exp (-~/az) and hence the 
wave decays exponentially with a decay length 
defined by r/a2 = 1, or r = a2. The compli- 
mentary error function terms show the diffusive 
structure of the wave. A diffusion width can be 
defined as 

7 - at 
0,1/2=1 

or 

r - at = OrIf (30) 

The wave is caused by the following mechan- 
ism: For small time, high temperatures are 
restricted to small distances from the surface 
both because of the conductive diffusion and 
because of radiative emission as can be seen 
from equation (21). Hence the interior of the 
medium receives little energy either by radiation 
or conduction. As the high temperatures propa- 
gate inwards, the interior begins to receive 
energy, but once radiative energy is absorbed in 
a distance l/k, the mean free path for radiation, 
the effect is not felt instantaneously everywhere 
but propagates as a wave. 

As t -+ co, the temperature approaches the 
value 

T = azTs + alT, exp (- T/az) (31) 

and the interior temperature, in general, never 
reaches the temperature at the surface Ts. 

A schematic diagram of the temperature field 
is shown in Fig. 1. 

It may be noted that as radiation becomes 
dominant and 81-f 0, a2 -+ 0, al -+ 1, and the 
wave decays more rapidly. In the limit, the 
temperature is zero throughout the medium. 

For t B 1 and 61 > 1, the temperature is 
given by 

T = azTs erfc 2dis3t) ___ + aA exp (- T/m> (32) 

No thermal wave as in the case 61 -=c 1 is 
present. As 61 -+ co, a2 + 1, al -+ 0, 83 -+ 61, and 
the solution approaches that given by pure 
conduction. 

T a2 G 

0 I 
T=af 

T 

FIG. 1. Schematic diagram of temperature field for 
7’,. = 0 and radiative transfer greater than conductive 

transfer, 61 = J* < 1 
4crYro3 . 

The temperature field is 

shown for small time (I < l), large time (t > I), and 
in the limit as t-t co. 

EFFECT OF EXTERNAZ, RADIATION 

Approximation for small time 
If the surface temperature is zero but an 

external radiation field is present, the tempera- 
ture within the medium is given for small time 
by 

exp (- T) II [22/(2d)l - 

4ti2 erfczd;slt) 1 (33) 

where In is the modified Bessel function. Both 
terms on the right-hand side of the above ex- 
pression are proportional to t for small time and 
hence are of less importance than either of the 
terms in equation (21). For T = 0, the above 
expression gives T = 0 as it must in order to 
satisfy the condition T8 = 0. As T -+ co, the 
temperature again approaches zero. 

Asymptotic approximation 
Again let us consider first the case when 

61 < 1. For t 9 1 and 61 < 1, the temperature 
is given by 

T = alT, erfc 2j&) - UIT, exp (- T/az) x 

[l - $erfc]$i] fort, > 7/n (34) 

T = alT, erfc 2d;s3t) - ; Tr exp (- T/a$ x 

7 - at 
erfc z-I for t < r/a (35) 

I ’ 
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The first terms on the right-hand sides of the 
above equations show the diffusive character of 
the temperature field with a diffusivity 8s and 
an effective surface temperature ulT,. The last 
term describes a wave-like motion as in the 
previous case with the same attenuation and 
diffusion of the wave. However, the change in 
temperature across the wave is now -alTr 
exp (-~/nz) or a reversal in sign from the 
previous case. 

The mechanism for the wave formation is 
effectively the reverse of that due to the surface 
temperature. For small time, the temperature 
reaches a maximum very near the surface. As 
time increases, this maximum temperature 
moves inward. However, the temperatures 
behind this maximum decrease more rapidly 
than those in front since the volume elements 
behind the point of maximum temperature are 
closer to the surface and lose energy more 
readily. 

As t -+ co, the temperature becomes 

T = alT, [l - exp (- T/~z)] (36) 

A schematic diagram of the temperature field is 
shown in Fig. 2. 

FIG. 2. Schematic diagram of temperature field for T, = 0 
and 61 < 1. The temperature field is shown for small 
time (te l), large time (t> l), and in the limit 

as I+ 00. 

For t $ 1 and Sr > 1, the temperature is qr = - 4 [azTs + alTrl 11 - exp (&.t> 

T = arT,. erfc 2$8t, - alT, exp (-- r/az) (37) 

and is zero for 7 = 0 and as 7 -+ cc. The 
temperature has the same form as the asymp- 
totic solution to the problem of the transient 

heat transfer by conduction alone in a seini- 
infinite medium with thermal diffusivity 8s and 
with heat being generated internally at a rate 
proportional to alTr exp (- T/az) [6]. 

HEAT FLUX 

If the temperature field is known, the heat 
flux can be found from equations (2) and (3). If 
we restrict our attention to the surface heat f?ux, 
these equations reduce to 

qc zz - 2& ar ( 1 37 7--o 

qr 1 - 4 ‘j T(T) exp [- T] dT + 4Tr (39) 
0 

In the lowest order approximation keeping 
only the first term of equation (21), the heat 
flux for small time is 

(40) 

qr = - 4T,[l - exp (6it)erfc 2/(&t)] + 4T, 

(41) 

In this approximation, the conductive heat flux 
is the same as in the pure conduction problem. 
The radiative heat flux is the sum of two com- 
ponents, an inward flux of 4Tr due to the 
external radiation, and an outward flux due to 
radiative emission from the medium itself. 

As t -+ 0, the radiative heat flux is 

qr = - 8T, (42) 

and increases as dt. Therefore, for small time. 
the conductive heat flux is dominant. 

For t B 1 and for any value of 61, the surface 
heat flux in the first approximation is 

qc = 261 
azTs t- alTr 

%+W 
(43) 

erfc %‘%t)] + ;$ (T, - TJ + 4Tr (44) 
_ 

Ast-+co, 

(45) 
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FIG. 3. Surface conductive heat flux as a function of 
time for Tr > T8. Dashed lines show approximations for 
long and short time, while the solid line indicates the 

interpolated value for the conductive heat flux. 

FIG. 4. Surface radiative heat flux as a function of time 
for Tr > T8. Dashed lines show approximations for long 
and short time, while the solid line indicates the inter- 

polated value for the radiative heat flux. 

qr = + - 8a2 &-j vr - Td (46) 

and the net flux is then zero. The conductive and 
radiative surface heat fluxes are shown in Figs. 
3 and 4. 
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APPENDIX 

Approximation for small time 
An approximate evaluation of the integrals 

occurring in question (18) can be accomplished 
by substituting expansions for large p for the 
functions Al,2 and ~1.2. Since large p corre- 
sponds to high frequencies, this approximation 
is valid when the high frequency waves dominate, 
i.e. when t is small. 

For large p, 

~1 = -- (;)l’“+Oib’li”) (Al) 

WI 

(A3) 

(A4) 

If these expressions are substituted into equa- 
tion (IQ the integrations can be performed 
easily and equations (21) and (33) result. 

Asymptotic approximation 
For large time, the form of the integrals in 

equation (18) suggests evaluation either by the 
method of steepest descent or of stationary 
phase [7]. The method of stationary phase is 
more convenient for this problem. In this 
method, the dominant contributions to the 
integral come from the neighborhood of the 
stationary or saddle point and perhaps from any 
singularities enclosed by the contour path 
deformed to pass through the saddle point. 
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In order to determine the path of stationary 
phase, it is necessary to know the singular 
points of yr and 72. yl has branch points at 

pl,z = - 4 + 61 -& 4i8:f2 (As> 

p4 = a GW 

and ys has branch points at pl, pz, and ps = 0. 
For the evaluation of Tz, the second integral 

in equation (18), we anticipate that the saddle 
point will be located near the origin. We then 
can approximate yz and AZ by expanding these 
functions for small p. The result is 

l/2 

+ 0 Cp3’“) (A7) 

a2Ts i alT* A2 x--p 
P 

WI 

Write the second integral in equation (18) as 
j A2 exp [_Rp)tl dp, where 

f(P) = p + y2 ; = - &Pl ‘2 + P + 0 (p3’“) 
3 

(A9) 

If we let p = 22, then 

7 
f(z) = -- Ft - - + 22 + O(z3) (AlO) 

The saddle point is located at the point zo at 
whichf’(zo) = 0, or 

(All) 

In the vicinity of the saddle point, 

f”(z0) 
f(z) =f(zo) t’- 2 (z - zo)” (A12) 

If the previous integration path r is now de- 
formed so as to pass through the saddle point 
zo and so as to be a path of stationary phase, 
then, by the use of equations (AlO) and (A12), 
an asymptotic value for TZ is given by 

Tz = [a2Ts ’ a1Y exp [f(zs)t] 
7ri 

J exp [tf”(z~)(z - z0)~/21 
z 

dz (A13) 

r’ 

4 

* 
P7 

P plane 2 plane 

FIG. 5. Deformed integration path for the diffusion term 
TZ of equation (18). The original path is shown by a solid 
line, while the path of stationary phase is indicated by a 
dashed line. The saddle point is located at PO in the p 

plane and zo in the z plane. 

The path r’, in thep and z planes, is as shown 
in Fig. 5. For small z, the path is a straight line 
at 45” to the real axis. Along this path the 
integral in equation (A13) can be written as 

J fyP k-4 - ZO)~I dz = mev (id9 
Z J 5 fq1 d4 -+ 

I+ 0 
0 

J 

exp ( - iup) 

E f q2 
dE (A14) 

00 
where 

a = f f”(.zo) 

ql = zo exp (- ir/4) 

q2 = zo exp (i~/4) 

These integrals can then be integrated and lead 
to the result for T given as the first terms on the 
right-hand sides of equations (22) and (34). 

For the evaluation of TI, the first integral in 
equation (18), we again anticipate that the 
saddle point will be located near the origin. yi 
and Ai are then approximated by 

(81 + 4Y2 2P 
Yl = - 

Sif2 l+ (& + 4)2 + 

2(% - 1) 
(& + 4)4P2 + O b3) I 

(Al5) 

A 
1 

= _ ai(Tr - T,) 
P 
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If we write this integral as f A1 exp [f(p)t] dp, In the present case, the saddle point may be 
then located on either the positive or negative real 

f(P)=-~+P(l--~-!s-L~x3P2 
axis. If the deformed path r’ passing through 
the saddle point encloses the singular point 

(A17) 
The saddle point is located at 

and it follows that 

Tl = Z.a1(2T’ jv Td exp [f(pe)t] 7r 

s 

exp W’(PO) (P - POWI --- 
P 

____ dp (Al% FIG. 6. Deformed integration path for 

I-’ 7’1 of equation (18). The original path _ _. _ 

t 

the wave term 
is shown by a 

The path of integration is shown in Fig. 6 and, 
sohd line, the path of stationary phase by a dashed line. 

for small p, is the same as the path ofintegra: 
The saddle uoint is at DO. 

tion in the z plane, for small z, shown in Fig. 5. p = 0, the contribution from this singular 
Since only the path near the saddle point is point must be included. 
important and since the integrands of equations The results of these integrations are shown as 
(A13) and (A14) are the same, the values of the the last terms of equations (22), (23), (34), and 
integrals are the same. (35). 

po = (at - 7) 6; ~- __-- (A18) 
7 Wl - 1) 

RCumk-Le transport d’energie non-stationnaire par rayonnement et conduction a travers un milieu 
semi-infini a ttt etudie. On a employe une technique de substitution de noyau afin d’obtenir des 
solutions analytiques et, par suite, de montrer aisement les caractbistiques principales et les parametres 
du probkme. La temperature et le flux de chaleur sont don& en fonction de la position et du temps 

et compares avec la solution de la conduction pure. 

Zusammenfassung-Die kurzzeitige Ubertragung von Energie durch Strahlung und Leitung in einem 
halbunendlichen Medium wurde untersucht. Urn analytische Liisungen zu erzielen und urn die 
Grundziige und Parameter des Problems vijllig aufzuzeigen, wurden einzelne Terme durch Exponen- 
tialfunktionen ersetzt. Temperatur and Warmestromdichte als Funktion von Ort und Zeit werden 

dargestellt und mit der Losung fur reine Leitung verglichen. 

krrroTann%-R3ysa.ncn nepexozHoP nponecc nepeuoca anepran uepes nony6ecuoneqHyIo 
CpeJQ’ Ei3JIJWHHeM II TenJIonpOBOnHOCTbPJ. &In TOrO, 11~06n nonysuTb auaJIIITkmecnne 
PemeHIIn II, CJIe,?IOBaTenbHO, nOJIy4IITb nOJIHyKl KapTIlHy 3aBIICIIMOCTEI OT OCHOBHbIX nepe- 
MeTpOB 3aAaWI, nCnOJIb30BaJICn MeTOn 3aMeHbI HApa. TeMnepaTypa II Ten.TIOBOt IIOTOK, 
IIOJIyWHHbIe n3Ii &HItuIIII WOOpJIIlHaTbI II BpeMeHII, CpaBHIIBaIOTCII C pemCHHCM JIJIH CJISqaH 

WICTOti TenJIOnpOBO~HOCTII. 


